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Abstract. We discuss the physical nature of electron sound signals excited in molybdenum 
by an acoustic wave and propagating at the Fermi velocity. The experimental temperature 
dependences of the amplitude and the phase velocity of these signals have been studied in 
the normal and superconducting state. We interpret this effect observed earlier in Ga by 
Burma er al as the exciration of a weakly damped zero-sound wave caused by the Fermi- 
liquid interaction between charge carriers. A dominating role of the electron-electron 
collisionsin thezero-sounddampingin Mowasestablished, and thecorresponding relaxation 
time was estimated. Theoretical calculations of the expected zero-sound behaviour in a 
superconductor are ingood agreement with theexperimentaldata andenable ustodetermine 
the intensity of the Fermi-liquid interaction. 

1. Introduction 

Recently the first observation of electron sound (i.e. signals having a linear dispersion 
law and propagating at velocities of the Fermi range order), which has been excited and 
recorded for ultrapure gallium via piezoelectric transducers responding to the elastic 
component of a wave, was reported [l]. Qualitative considerations about its Fermi- 
liquid (zero-sound) nature were expressed in [I] on the basis of some experimental 
results revealing an analogy with the zero-sound behaviour in superfluid )He [2]. The 
problem of acoustic excitation and propagation of a zero-sound wave in metals, 
especially in the superconducting state, has not been studied theoretically up to now and 
represents a very interesting topic within the Fermi-liquid approach for studying the 
electron structure of metals. In this paper we present the results of a detailed exper- 
imental investigation of this effect in molybdenum and develop the theory describing 
zero-sound behaviour in metals including superconductors. The comparison between 
theoretical and experimental results revealsgood agreement and permits us to determine 
the isotropic part of the Landau correlation function that has almost never been found 
by any methods known earlier. 
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Figure 1. Experimental temperature depen- 
dencesoithe amplitude U" and the phase rp,oithe 
electronsoundin thenormalstateofMo (0,b = 
523MHz: q11[111]; L=0.284cm). The inset 
shows the experimental arrangement: G, RFgen- 
erator; DL, delay line; S, sample; R. receiver; T ,  
piezoelectric transducers. 

Figure 2. Experimental temperature depen- 
dences oi the amplitude change duo and the vel- 
ocity change dui '  of the electron sound in MO 
below T, ( w / k  = 52.3MHz; qll[lll]; L = 
0,284 cm). In the insets their behaviour near Tc is 
presented. 

2. Experimental results 

The experimental layout is shown in the inset of figure 1. The piezoelectric transducers 
with longitudinal vibrations were excited by short (about 5 X lO-'s) RF pulses with a 
carrier frequency w / 2 z  of 50and 150 MHz. The delay line was used to separate the rapid 
electron sound signal from the percolating exciting pulse. The MO sample of [111] 
orientation and length L = 0.284cm was prepared from a material with a residual 
resistancerateR3WK/R4.*K = 105andamomentumrelaxation timer, = 3 x 10b9s, both 
determined by the sound velocity measurements at liquid-helium temperature in the 
magnetic field H 1 q. where H = 15 kOe [3]. 

As in [l]. the receiving system recorded, as well as the sound signal, a rapid weak 
signal passing through the sample almost without any delay. Contrary to [l], we have 
not made any direct estimation of its absolute velocity ua because of the weakness of this 
signal in MO, Nevertheless, the full analogy of its behaviour with that observed earlier 
in Ga enables us to assume that oo JC up .  

We studied the temperature dependences of the rapid signal amplitude uoand phase 
cpo both above and below T,. The transformation efficiency K, i.e. the relation between 
ua and the exciting signal amplitude u., at T = 1.6 K was found, allowing for the attenu- 
ation r,, of the output sound signal: 



Zero sound in MO 7869 

uO/uer = -(95 * 0.5) dB at 50 MHz 

uou, = -(lo1 * 1) dB at 150 MHz. 

The temperature dependences of uo and ~ J O  in the normal state of MO are shown in 
figure 1. We have succeeded in our measurements up to 8 K; above this temperature the 
signal cannot be distinguished from the noise. The variation in 'p0 describes the phase 
velocity decrease with increasing temperature. 

In a superconducting state uo decreases like the sound attenuation, and the variation 
in q0 corresponds to decreasing phase velocity (figure 2). The recorded critical tem- 
perature of 0.907 K was somewhat lower than its accepted value of 0.92 K because the 
sample overheated as a result of powerful sound pulses. 

The Fermi velocities in the [ 11 11 direction, which are essential for further discussion, 
were determined in OUI experiments by the tilt effect [4]: 

uFl = (7 
om = (2.6 2 0.2) X 10' cm SKI ' 

0.3) X lo7 cm s-l 

3. Discussion of the experimental results 

To the best of our knowledge the possible mechanisms of electron sound waves are zero 
sound [ 5 ] ,  acoustic plasmons [6] and quasiwaves [7]. We can note that the temperature 
dependence of signal amplitude can be described for all cases by the relaxation factor 

Here t(T) is the temperature-dependent relaxation time; uo = uF for quasiwaves, and 
uo 2 vFfor zero sound. The variations in uo(T) versus T2 (and versus T3 for comparison) 
are plotted in figure 3. In the whole temperature region the function r-l(T) is described 
well by thequadraticdependence that indicates the dominating role of electron-electron 
collisions. This is not surprising, because the same dependence in MO was found in [8] 
even for the RF size effect, where the small-angle scattering is substantial. In our 
experiment, the small-angle scattering cannot give any contribution to wave damping 
because of the long electron sound wavelength, so that normal electron-phonon col- 
lisions are not essential at T < 1&12 K. 

From the data shown in figure 3 we obtained an inverse relaxation length 
[uoz(T)]-' =0.17TZ,yieldingt-'(T) = 1.2 X 107T2 s-'foruo = uF1.Thisvalueisingood 
agreement with the data for the Wsize effect [8], although somewhat lower than in [8]. 
Note that, if we evaluate the temperature-dependent contribution to T-' employing the 
value u0 = ( U ~ ~ U ~ / ~ ) ' / ~  [6]forthe acoustic plasmon, the coefficient in the T2-dependence 
oft- '  will be too small. 

The quasiwaves, being a single-electron effect, are caused by the ballistic transfer of 
an elastic perturbation via electrons with the extreme Fermi velocity. In this case it is 
difficult to expect noticeable phase velocity variations upon a change in 5 .  At the same 
time, for uo = 7 x 10'cm s-' at T = 1 K the whole phase change gives a wave velocity 
decrease of 50% at 8 K. This indicates the wave nature of the recorded signals, because 
the velocity of a real eigenmode of the electron system evidently depends on the 
relaxation time. 
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Figure 3. Experimental variations in the zero- 
sound amplitude U" versus T' (lower curve) and 
versus T3 (upper curve). 

Figure 4. Numerically calculated dependence of 
the transformation coefficient K. on the Fermi- 
liquid parameter F. The magnitude of K, is nor- 
malired by the value (rrr/9) [sx/vp) evaluated by 
using the same model. 

Theacousticplasmondiffersfrom thezerosound first ofallin thepresenceof Landau 
damping rL: 

r L / W = u ; ;  = 1 . 4 x  ~ o - ~ c m s - l .  (4) 

uo = u, ,Kexp(-L/uor)exp(-r ,L)  (5) 

Assuming that uo is given by 

we approximate the measured values of u.,/uo for different frequencies by a linear 
function and estimate the possible value r L / W  = 0.4 X cm" s. The difference 
between this magnitude and the theoretical value (4) is, however, not sufficiently 
significant to abandon finally the acoustic plasmon concept. 

A more definite conclusion could be drawn from measurements on samples with 
lengths larger by afactor of 2-3, but unfortunately we could not realize this idea because 
of signal weakness. However, we found that for a Ga sample with a similar value of L ,  
where the signal was more intensive, the frequency-dependent part of the damping 
increased much more slowly than L when the latter increased [9]. Most probably the 
observed frequency dependence of uo reflects the diffraction losses, which are essential 
here because all the typical sizes, such as wavelength, sample length and radiator 
diameter, are of the same order (Fresnel diffraction region). Thus we can say that the 
Landau damping is actually absent in the rapid signals; hence they have a zero-sound 
nature. 

4. Theory and its comparison with experiment 

To treat our experimental data theoretically within the framework of the Fermi-liquid 
approach we have used the simple model of the Fermi liquid with two groups of 
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charge carriers possessing spherical Fermi surfaces. This model was employed for the 
description of zero-sound propagation in normal metals in [lo, 111, where it was shown 
in particular that in a two-band metal with equal carrier masses the dispersion equation 
for zero sound has the following form: 

1 + Fa(s) = 0 a(s) = 1 - (s/2) h[(s + I)/(s - I)] s = w/quF. (6) 
Here F >  0 is the difference between the intraband and interband Fermi-liquid inter- 
action parameters. Since the zero-soundvelocity is unknown in MO, we cannot determine 
F directly from the normal-state data by using (6) .  To extract additional information 
from the measurements in the superconductingstate we must generalize the theory for 
this case. 

Thequestion oftheexistence ofcollectivemodesin asuperconductor wasformulated 
immediately after the BCS theory appeared. In a neutral superfluid Fermi system at T = 
0 the sound-like mode associated with density fluctuations has the dispersion law 
w = q u F / d  [E, 131. This result was generalized in [14-16] and applied to 'He with 
allowance for the Fermi-liquid interaction. In the charged system, where the density 
fluctuations are suppressed by the Coulomb forces, an analogous mode can exist only in 
a metal with at least two groups of carriers. This mode, being predicted in 1171 for T =  
0, represents oscillations of the difference x1 - x2 between the phases of superfluid 
condensates, accompanied by fluctuations in their partial densities upon full charge 
neutrality. It will be shown in this section that in the presence of the Fermi-liquid 
interaction these oscillations exist under some conditions at all temperatures below T, 
as the coupled zero-sound vibrations of the quasiparticle gas and superfluid condensate, 
which can be excited by the acoustic wave. 

The superconducting state of a metal with some carrier groups is described by 
the set of complex ordering parameters Aiexp(ix,). Within the BCS model, the small 
oscillationsofXiareindependent of the fluctuationsof Ai. Thus the initial set of equations 
includes the charge neutrality condition 

6n = E 6ni = O  (7) 
i=1.2 

and the continuity equations, describing the oscillations of charge an, and current 
densities ji of each group, 

a i i  + div j i  = 0. (8) 
Tocalculate theresponse6nj,jiofaclean (or- m)superconductortoslowlyvarying 

fields ( w  < A(T), q < A(T) /uF) ,  we use the quasiparticle representation of the density 
matrixequations [IS, 191, introducing the distribution functionf(p, r, r )  ofquasiparticles 
with the local energy spectrum e = e(p, r, t )  [ZO]. Following [18], we allowed for the 
Fermi-liquid change 65(p, r, t )  of the electron energy E&) in the spectrum E@, r ,  t )  
derived in 1211 for the superconductor with deformed lattice: 

E(p,r, t )  = c p  + u . p s  + (p - m o ) * u  (9) 

~ p = ~ ~ ( P ) - ~ F + @ + ( ~ ~ ~ + f p . ~ ~ ) ( a ~ o / a ~ 8 ) + ~ 5 ( P . r r ~ )  (10) 

ep =- 

Here @ = (l/Z)(ax/dt) + eq is the electrochemical potential,p, = (1/2)Vx - (e/c)A is 
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the momentum of the supemuid condensate, both describing oscillations of the phasex 
and electromagnetic potentials q, A; A, is the deformation potential; fG. ,p ' )  is the 
Landau correlation function. For briefness we omit the band indices in (9)-(12). 

Considering only the isotropic part of the Landau function 
F(pi,pk) = uFkf(p, ,ph)+ F,S, + F,(1 - Si& where vFi is the partial density of states, 
we linearize the kinetic equation forf(p, r, t) [ZO] with respect to the small perturbation 
$J of the local-equilibrium distribution function nF(E(p, r, t)): 

(12) 

E V Beruglyi et a1 

aly /a t  + U * (g/&)Vly + ( E / / E ) ( S <  + 6 + Anpiup) + v - &  = 0. 
The solution of (12) determines the system response given by 

and the Fermi-liquid addition to the excitation energy given by 

Here Amp = Amp - (Aap), pr is the condensate density, and the angular brackets denote 
averaging over the Fermi surface. The coupled longitudinal oscillations of the electron 
and ion subsystems are described by the lattice dynamics equation 

(16) w2u = q2s:u + fe 
where sac is the velocity of sound, f, is the electron force given by 

p is the metal density, A Aqq is the longitudinal component of the deformation 
potential. 

Let us consider first waves in the two-component superconducting electron system, 
neglecting the electron-lattice conpling and omitting the deformation term in (12). 
Assuming for simplicity that AI = A2 = A(T), we derive the dispersion equation 

A(s, F )  I 1 + F[a - (U - c)'/(u + b - a)] = 0 (18) 
with the linear response coefficients a ,  b and c defined in [21]: 

c = - (dE$l+ anF (wR)) 

R = (q . vE/e - m)-I is the resolvent of the kinetic equation (12); F = Fo - F,. 
In the normal state we have a = b = c = a(s); so equation (18) coincides with 

equation (6). In the superconducting state at T = 0, where a = 1, c = 0 and b = -1/3sz, 
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equation (18) describes the propagation of superfluid condensate oscillations at the 
velocity 

s(0) = vF[(l + F)/3]@. (22) 

The condition ~ ~ ( 0 )  > ~~providingthe weaknessofzero-sounddampinginthewhole 
temperature region 0 < T < T, has the form F > 2 following from (22). In the opposite 
case the intermediate-temperature range can exist, where Landau damping suppresses 
zero sound, although this effect could be quite weak because of a rapid decrease in the 
excitation number. 

Expanding (18)-(21) over the small parameter A/Tc, we obtain the temperature- 
dependent correction 6s = s(T) - s(T,) describing the zero-sound velocity in the lower 
vicinity of T,: 

&(T)/S(TJ = -FN,[(s2 - 1)/(1 + F - s2)]ft(s) N,  = 2rA/4TC 

f,(s) = s/- - ~ [ s ~ i n - ~ ( ~ / s ) ] ~ / [ -  + s2 sin-'(l/s)] > o 
(3) 

(24) 

where s = s(TJ obeys equation (6) .  

mass approximation for A.,$ 
In studying the excitation of zero sound by the acoustic wave we use the effective- 

Am# = m*(S,0u$/3 - u,va) (25) 

where ma = me for electrons and m* = -me for holes. Within the framework of this 
model, at my = m; the coupling between zero sound and elastic deformation is absent 
cf, = 0), because no macroscopic fields accompany the zero-sound wave in this case. 
However, in a compensated metal (mf = -m;)  the electron force (17) has a non-zero 
value: 

f J 4 ,  w )  = FAq, w)u(q, w )  (26) 

B(s, F) = -[s2 - (1 + F) /3I2 /F  (27) 

Fe = (6m,/M)(qudZ W, F)/A(s,  F )  

(M is the ion mass); therefore zero sound can be excited by an acoustic wave on the 
sample surface. The calculation of the elastic component of zero sound was carried out 
by means of the well known method of boundary problem solution in the half-space 
0 < x < m. Executing the odd continuation of the longitudinal electric field E ( x ,  w )  and 
the deformation u(x, 0) to x < 0, we can apply the Fourier transformation to (7)-(17) 
on the whole x axis, allowing for the jump 2u(O) of u(x ,  w )  at x = 0. Solving the set 
of inhomogeneous equations arising from this and carrying out the inverse Fourier 
transformation, we have 

exp(iqx). (28) 
w2 

-- += 2 (w2 - q*s$ + F,(q, w )  

Here u(0) is the exciting signal amplitude. 
The expression under the integral sign in (28) has two poles, one of them being 

associated with the usual acoustic wave renormalized slightly by the electron force, and 
the other with the excited zero-sound wave. This reflects the surface acoustic excitation 
oftwo eigenmodes of the coupled electron and ion subsystems of a metalwIhich propagate 
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independently with sufficiently different velocities. The second pole contribution to (28) 
yields the general expression for K 

E V Bezuglyi el a1 

K = iz(m,/l~)(~/s~)(a~/a~)-I (29) 

K. = 12(m,/M)[B(s, F)/(Fs)~][~ + F -  s2)/(sZ - l)]. (30) 

having the following form in the normal state: 

Equation (30) contains a complex implicit dependence on F, plotted in figure 4 by 
numerical calculation. It has the maximum at F -  1 and tends to zero at F+ 0 and 
F-+ w. 

In the superconducting state, according to (U), (26) and (U),  the function K(s, F )  
goes to zero at T+ 0. Physically this means that the zero-sound non-equilibrium state 
of the electron system could be excited in the vibrating lattice only in the presence of 
excitations, disappearing at T = 0. In the vicinity of T, the change 6K is proportional to 
A ( T ) :  

6K(T) /K"  = WT) (s)/as)/fl (4 + (aK"(s)/as)/K"(s)l. (31) 

Passing to the experimental data treatment, on the basis of the theoretical results, 
we draw attention first to the good qualitative agreement of the measured magnitudes 
of the transformation coefficient (1) and their behaviour below T, (figure 1) with the 
theoretical predictions (30) and (31). In particular, u,(T) varies near T, in a similar way 
to the sound attenuation, being linear with A(T) in accordance with (31). 

As regards the temperature dependence of the zero-sound velocity, we emphasize 
that all these data were obtained by measuring the phase q(T) = q L  = wL/uo(T) of the 
signal which had passed through the sample, so the variation 6u, ' (T)  is really the 
measured quantity possessing a sufficiently high accuracy. Thus we can employ in 
principle the measured phase difference between the normal state and the deep 
superconducting state: 

6q(o) = q(T+O) - ~ ( T c )  = 6(qL)  = (wL/uF)[s"(o) - s-l(Tc)] (32) 

to determine F by using the theoretical dependences of s(0) (22) and s(T,) (6) on F. 
Unfortunately, in this method there arises the problem of choosing the uF-value in (32), 
which is moreover known with a lower accuracy than 5-10% and certainly does not 
coincide with the model value of uF. 

To avoid this problem, let us use equation (23), which shows that the normalized 
phase variation 6q(T)/6q(O) = 6uo1(T)/6u,' (0) near T, is a linear function of A(T)/ 
A(0) with the slope depending on the only model parameter F. Therefore, by using the 
numerical calculation of this dependence (figure 5) we can determine F directly by 
employing the experimentally measured slope. The linear experimental dependence of 
6 u { I ( T ) / 6 u ~ ' ( O )  on A(T)/A(O) near Tc, presentedinfigure6, confirmsour theoretical 
result (23) and yields the following values of the Fermi-liquid parameter F and the 
normalized zero-sound velocity s(T) uo(T)/uF obtained from (6) and (22): 

F = 1.06 S ( T , )  = 1.05 s(0) = 0.83 ( s l l l ~ ~ ~ l ) .  (33) 

Finally, from equations (32) and (33) we found a quite acceptable model value of 
uF = 3.7 x lO'cm s-' which proved to be of the order of the measured magnitudes (2); 
this shows the internal self-consistency of the suggested theoretical model. 
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Figure 5. Numerically calculated value of the lin- Figure 6. Experimental dependence of 
ear dependence slope of the normalized zero- 
sound velocity variation &'(T)/6u;'(O) on 
A(T)/A(O) plotted as a function of F. 

6u;'(T)/6u;'(O)onA(T)/A(O) (BCS) near T,. 

5. Conclusion 

The discovery of zero sound in MO extends the :t of materials in which sound ca 
propagate in normal and superconducting state. 7 3 have observed such signals also i 
magnetic fields up to 15 kOe 1221 at any orientation of H. The theoretical analysis [Z 
confirms the Fermi-liauid nature of this wave which has a velocity uw < U,, indeoendei 
of H. The remarkabie feature of the experiments in [22] was- the possibilit; of the 
electromagnetic excitation of the zero-sound signal, which becomes comparable with 
the corresponding acoustic signal. Moreover, our preliminary investigation of AI shows 
the possibility of zero-sound excitation also in uncompensated metals, which could be 
explained beyond the simplest approximation of Am# (25). So we consider zero sound 
both as an observable phenomenon in metal plasmas and as the direct and powerful 
instrument for Fermi-liquid interaction diagnostics in metals. 
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